Recent news

Mar 2017

Tim and Greg Scholes organize a Focus session on Spectroscopy and Dynamics of Multichromophore Systems at APS March Meeting.

Feb 2017

Gaussian-Based Coupled-Cluster Theory for the Ground State and Band Structure of Solids has been accepted for publication in the Journal of Chemical Theory and Computation.

Jan 2017

We contribute to the open-source PySCF software package, especially concerning excited-state and condensed-phase electronic structure. A preprint describing the capabilities and design philosophy of PySCF has been posted to the arXiv: The Python-based Simulations of Chemistry Framework (PySCF).

Jan 2017

Tim gives an invited talk at the 18th Total Energy and Force Methods workshop, held at ICTP.

Nov 2016

First-year graduate students Yeongsu Cho (Seoul National University), Jonathan Fetherolf (Rutgers), and Malte Lange (University of Washington) join the group!

Research areas

We work on a variety of quantum-mechanical problems motivated by excited-state phenomenology. This research occurs at the fascinating interface of physical chemistry, condensed-matter physics, and materials science.

Quantum dynamics and spectroscopy

Building on modern theories of quantum dynamics, we develop powerful simulation techniques for nonequilibrium and time-resolved spectroscopies. These new tools enable the accurate simulation of extremely large and complex sytems, providing new insights into excited-state structure and dynamics.

Emerging materials

We are actively exploring the excited-state behavior of fundamentally interesting and technologically promising materials, especially those that are anisotropic, layered, or low-dimensional. Particular materials of interest include conjugated polymers, organic molecular crystals, and quasi-two-dimensional inorganic semiconductors.

Condensed-phase electronic structure

Aiming towards highly accurate but insightful descriptions of electronic excitations, we formulate and apply electronic structure methods adapted for the condensed phase. Some of our favorite tools are low-energy effective theories, many-body diagrammatics, and coupled-cluster techniques.

Interested in learning more?

Check out our publications!

About Tim

Timothy Berkelbach is the Neubauer Family Assistant Professor in the Department of Chemistry and the James Franck Institute at the University of Chicago. He received his B.A. in physics and chemistry from NYU in 2009 and his Ph.D. in chemical physics from Columbia University in 2014, where he was a Department of Energy Office of Science Graduate Research Fellow advised by David Reichman. Before coming to the University of Chicago, Tim spent two years as a fellow of the Princeton Center for Theoretical Science, working closely with Garnet Chan and his group.

Contact info

929 E. 57th St., GCIS E133, Chicago IL 60637

1 773 834 9879

berkelbach@uchicago.edu